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ABSTRPACT

The practical applicability of randomization tests is discussed. The randomization

rtest !:-r two independent scWmpIcs is the specific test examined in both hypothesis and

si mnifcance testing contexts. This test has optimum theoretical properties as a

ncnparametric procedure for comparing the means of two populations. However. the

calculations that are required to actually use the test in practice can be extremely time

consuming. Using the randcrization zest for two independent samples to conduct a

suzniticance test is shown to be a #P-complete enumeration problem. This implies that

- a computationallv eflcient way to perform an exact version of the procedure is not

likelv to exist. Two approximate ways to perform the randomization test are studied

with the aid of a simulation. One method uses a normal distribution to arnproximate

. the actual randomization distribution and the other method is the usual two sample t-

test. The t-test is found to yield results very close to those that are obtained from the

exact randomization test under the ccnditions studied.
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1. INTRODUCTION

Randomization tests have long been recognized as powerful nonparametric

statistical methods since the introduction of the principal ideas by R.A. Fisher in 1935.

Even when compared to the most powerful parametric tests such as the t-test.

randomization tests perform extremely well. Theoretical work since Fisher's paper has

indicated that randomization tests may be the best methods to use in many situations

involving significance testing or tests of hypotheses. This is particularly true if

asumotions about the underlying probability distributions are difficult to establish.

Despire their strong theoretical basis, however, randomization tests have not

been in widespread use. The major reason they have not been commonly used is

because they are very tedious to perform. Even when sample sizes are relatively small,

* the computation time required to perform these tests can be significant. While this is

less of a problem with modern computing equipment, there still exists a point where

the size of the data sets is large enough to make the procedures impractical. This point

is reached rapidly due to the inherent combinatorial nature of the algorithms used to

rerform the tests. Vast improvements in computational speed have only a marginal

effect on the size of the data sets that can be handled. Approximate randomization

tests have been developed because of these difficulties, but analxtic results describing

the errors involved with their use are limited. Exact analhtic results are difficult to

obtain because the form of the underlying distributions is not known.

This thesis addresses the issue of practical implementation of randomization tests.

The randomization testfor two independent samples is the specific procedure chosen for

the entire study. This procedure is representative of randomization tests in general. A

* complete description of this test. along with each assumption needed to ensure its

validity is aiven first. Also included is a summarv of some of the important theoretial

work that has been done since the test appeared in the literature. Next. the methods

available for performing an exact version of this test are shown to require so much

, computation time when the length of the input data sets increases that the methods

become impractical on even the fastest computers. The mathematical framework

necessary to prove this result is fully developed using concepts from the theory of OP-

complete enumeration problems.
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11. RANDOMIZATION TEST THEORY

A. THE RANDOMIZATION TEST FOR TWO INDEPENDENT SAMPLES

1. Randomization Concept

T he b-asic idea of'rxm:zzo was introduiced ' . hr: 1 3Rf1

P maonlzation invlve"s taking rCa.ut!0ns in ihe desiien and taanrf'orn:yke, 01

* ~:. v.:x;exC~wCtis, one inI .hich treatments are randomix)1% assienedC 11h~ each

Li-cr Iru ht. -n the assof'a randomnized experimlent, It is po'.s I'le to

a tesL t J, ~:n::ac ~hytMaino MV a11SUnmptin'S a1hoat ti - dstrib':o

* '** c:'.zr~!a-cc , freery:.Ler- 'Ref. 2: P. 951. The 'dea of 'usli a l~am:u~ est IS
to e:rm h rthci~or ie:!canets novn two or mnore san-ples f'rom

* J :v~n~vc~e~t~ha~cn n::Lins are unknown. The hvpotheses of' interest

I:- -,e -rv~tn heti-er or noz these udistribut cn funrc!ions aire ail

C x : nt~ . .Ct :a , r.'< dillren -Cj[1, L_1ion parameters nmeans, f'or exaimple).

2. Test Method

Ar.1 1'1? I I' . "?Sl lz rst two :?uiepetident wrrmpls was Titpropos ed b-,: Pi1Man

1f. - he p tirpee of' ths est is to compare the meanis of- t-wo populations;. The
:or i to Vra torno apsX . . . . . . . . . and 1". Y"..V of sizes t7

~: eN e:~v fro twz~o independent popltosNad .Feo'in the

Cno r onover [Ref' 4: p. S2SI. independence wli;n eac:h sam ple is assumned, as

inde.pendence between the two samples. Also assumed is that either the two
7) tondsruto fucinaridentical, or one population ha-s a larcer mnean

-,,r the othe. Without this second assumption the test is stIIl valid but might lack

L* cun';-ency. The,-, hypothesis to be tested is that the mean of' the population f'romn

Xhic h the X's were drawn (i is the same as the mean of the population from which

the Vs -ere drawn (pI) The (two-tailed) alternative is that the means are not the

Lnl.In other words, this is equivalent to testing

V . I
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where H0 denotes the null hypothesis and H 1 is the alternate. This two-tailed test is the-v.,
specific form of the randomization test that will be referred to henceforth.

An appropriate test statistic that can be used is just the sum of the X

observations:

.V. n
To = X. (eqn 2.1

--

* -*The critical Ior significance level of the test is denoted a. This number is equal to the
probabiiity that the test statistic could have produced values identical to or more

extreme than the originally observed value T O. To find a, the null hypothesis H0 is

assumed to be true; that is. the X and Y populations are identically distributed. If H0

is true. then the Xs should have no more of a tendency to be low or high than do the

.,-. Ys. Essentially, the Xs and Y's could be thought of as just one collection of n-4-m

0 observations 1rom the same distribution, and each selection of n X observations

should be consiered equally liykv from the n-rm observations available.

* The sign.licance level a is obtained by counting the number of ways n of the

n - ,r observatons may be selected so that their sum is equal to or more extreme than
,he crizinall, observed value of the test statistic T0. More extreme means smaller if

is in the lower tail or larL-er if T O is in the upper tail of the distribution of all possible

values of the test statistic using the observed data. The number of ways is doubled,

..' because the test is two-tailed, and divided by (n"to yield a. [Ref 4: p. 3291

In the case of hvpothesis testing. a critical value, say Q0, is specified beforehand

an'- the null hypothesis is rejected if ct < a0. If significance testing is being performed.

the interpretation is somewhat different. In this case, there is no pre-specified value at0
The signiicance level a is computed and if it is small, say less than .01, then either the

* cbserved value of the test statistic happened to be a rare event or the basic premise
. j that the X's and Y's are identically distributed is unlikely. The smaller aE is. the more

compelling is the latter event.

B. THEORETICAL PROPERTIES

I. Efficiency and Asymptotic Relative Efficiency
The term effciency is applied to statistical tests when comparing the sample

sizes required by two different tests that give comparable results. The power of a test is

defined to be the probability of rejecting the null hypothesis I10 when it is false. The

. 12



power of' a test depends upon factors such as sample size and the particular alternate

hypothesis H1 chosen. Suppose two tests have the same level of significance and

power and they can both be used to test a particular 11f against a particular alternate

SlI. Then the test requirine the smaller sample size is preferred, because a smaller

sample size means less cost and elfort is required in the experiment. As indicated in

Cono~er [Ref' 4: p. SS[. the test with the smaller sample size is said to be more ef'f]cien t

than the other test.

Suppose T1 and T, represent two tests that could be used to test a given 1 O

against a given If,. Suppose further that either test. if used. would yield the same value

of a and the same power characteristics. Then. adopting Conovers notation

[Ref. 4: pp. SS-S9, the relative etYrienc' of' T1 to T, is the ratio n, k,1. where n, and P1,

are the sample sizes required by the tests T and T, respectively in order for each to

vield identical results.

The relative eflciency of two tests depends on the particular values chosen for

a and power and it also depends on the particular alternate hypothesis H1 chosen if H1
is composite...\ comrosite hypotheis is one that does not specify a probability law

compietelv. It would be more useful if an eficiency measure could be developed that

does not depend on these quantities. Such a measure can be developed in the following

way. Consider two parallel sequences of tests constructed so that as n1 and n, are

increased, the significance level and power of each pair of tests remains the same. To

accomplish this, two things would be required. First, as n is increased, the power of

each test tn the first sequence would change if the alternate hypothesis H1 were kept

fixed. To keep the power constant, a different H, could be selected each time. The

values of a and power would then remain the same from test to test in the first

sequence. Second, For each value of n1P a value of n2 must be calculated so that each

test in the second sequence has the same values of a and power as its corresponding

test in the first sequence under the alternative hypothesis chosen. Then there is a

, equence of values of relative efficiency n, n1. one for each pair of tests in the original

sequences. If n, nI approaches a constant as n, becomes large. then that constant is

called the asymptotic relativ'e elTiciencv" (.\.R.E.) of the first sequence of tests to the

second, if the constant is the same for all values of a and power.

The A.R.E. is one measure of a test's performance. For many nonparametric

tests, the A.R.E. is less than 1.0 when compared to the corresponding parametric tests

in situations where they are appropriate. This implies that, in general. a nonparametric

13
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procedure will require a larger sample size to achieve the same results as a parametric

procedure if the basic assumptions of the parametric method are valid (e.g., normality).

Ilovever, according to Conover [Ref 4: p. 327], the A.R.E. of the randomization test is

P-1 ',en compared to the most powerfal parametric tests in some situations. The

\. R.E. may be much higher than 1.0 if the basic assumptions of the parametric test are

no, rue:. Thus a randomization test should be at least as efficient as a parametric test

,,nd co',uld be more efficient on the basis of asymptotic relative efficiency. Note that, on

the basis ot" re!ati:'e eiciency (not asymptotic), the randomization test might be better

or worse than a parametric test depending on the circumstances. Generally, though.

asymptotic relative efficiency is a reasonable and widely accepted measure of a test's

per. ormance.

2. Unbiasedness

The definition of an unbiased test is a test in which the probability of rejecting
a 1'alse Ho is always greater than or equal to the probability of rejecting a true H0

* [Ref 4: p. S61. Another way to state this is to say the power is at least as large as the

:Cvel of significance. This is obviously a desirable property to have; a test should be

more kelv to reject H when it is false than when it is true. The randomization test

.as been shown to be an unbiased test in Lehmann and other sources [Refs. 5,6].

3. Uniformly Most Powerful Test

The power of a test, denoted by I - 0, is the probability of rejecting a false

null hypothesis. In the case of a simple alternate hypothesis that specifies a probability

law completely, this is a unique number. However, in the case of a composite alternate

hypothesis, the power is not unique. The alternate hypothesis being considered here,

-I II: Px p,,, is composite since there are an infinite number of possible probability

functions implied by the inequality. When the alternate hypothesis is of composite

.typ power is represented by a power function, where the value of power depends on

the parameters of the alternate probability laws implied by H1. Specifically,
_.P

Power = P(Reject f10i 0) (eqn 2.2)

Where 0= Jx" lay" The power function for a two-tailed test of H0 vs. H, has a

characteristic U'-shape centered at the value px- ply = 0.
The size of a test is deined to he the maximum probability of a T-pe I error

,.(rejecting the null hypothesis when ;t is true) over all values of parameters for

(reen t14
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which Ho is true. Among a! tests which have size a, the best test (if it exists) is that

test which has the largest power over all values for which H is true. Such a test is

called the un&Irm/y most po;v.'r/'i test ot" size a [Ref. 7]. Graphically, this implies the

power function of a uniformly most powerful test will pass through the point a when

*FI Hl is true and will lie above the power curves of all other possible tests of size a that
., couldb e used.

In the -Ase of the randomization test for two independent samples. Oden and

Wedel IRef 5: p. 520] have stated the following for the case of a one-sided alternative

H1 : "Among, all unbiased tests for testing 110 against H, the test is uniformly most

powerful for the subclass of HI with elements ( f, g ) such that In ( fg ) is linear,

including e.g. the case of' 'normality and equal variances'." The extension to a two-

sided alternative is readily apparent. Here, f and g are one-dimensional probability

density functions that belong to the class of functions associated with H1. An example

of densities j" and g that satisfy such conditions would be two standard exponential

density functions with parameters X1 and X., respectively.

This is a veryv significant result. The fact that the randomization test for two

:ndependent samples is the uniformyi' most powerful test against a certain subclass of

alternatives is strong theoretical justification for use of the test in man%. circumstances.

When the other desirable properties of the test mentioned previously are also

considered, the implication is that the randomization test should be preferred over any

other method of comparing means unless underlying distributions can be clearly

justified.

,15
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III. COMPUTATIONAL ISSUES

A. COMBINATORIAL NATURE OF THE RANDOMIZATION TEST

1. Rapid Growth of Combinations

Even though the randomization test for two independent samples has been

shown to possess many desirable properties. the test is not encountered very often in

practice. The basic reason is the amount of computation time required to perform the

test. In the previous chapter, the test method was shown to be essentially a counting

procedure involving combinations of the data. The number of combinations possible of

n -r objects taken n at a time is (f"m), and this number grows at a substantial rate as

n and m are increased. The following table illustrates the growth of combinations for

some selected values of n and m:

TABLE 1

COMBINATIONS

n fn (n+m)

2 6
252

7 S 6435
9 10 92378
11 12 1352078
15 20 3247943160

There is no known way to perform the exact randomization test for the

n general case other than enumerating all possible combinations of the data (or at least a

f air proportion of them) and comparing each one to the original test statistic TO. In

certain special cases, more efficient methods do exist. For an example of such a method

see Soms [Ref. 8]. It is possible to reduce the number of combinations that need to be

0,.O; considered through the use of more intelligent enumeration schemes, backtrack search

or other techniques. However, even though considerable savings could be achieved, the

number of combinations remaining continues to grow at a rate proportional to total

enumeration. Thus the computation time required to perform the general

randomization test is a function of the number of combinations involved.

16
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2. Computer Time Considerations

As an example of how rapidly enumeration becomes untenable, consider a

computing device capable of generating combinations of data sequentially and

comparing each one to a fixed value. Assume that each combination could be formed.

compared. and counted in a time span of 1 microsecond (this is very' fast. even for a

iar ze computer. Also assume it is desired to use this device to perform the

randomization test on samples of sizes up to n = 30 and m= 30. Such sample sizes are

very common in practice. The following table gives the total time that would be

required to enumerate all combinations of the form (,"") using this device. For

simplicity, only equal sample sizes are included (n = m):

TABLE 2

COMPUTATION TIMES

n n or m Approximate Time Requirement

.00025 seconds
10 IS seconds
15 155 seconds
20 3S.3 hours
25 4.01 years
30 37.5 centuries

Even if the number of combinations could be reduced by a factor of 100 through

careful enumeration or backtrack search as mentioned before, the time requirements

would remain virtually untenable. Further, if a new computing device were installed

that performed the calculations 1000 times faster, our ability to process the data sets

. would be increased only marginall,.

The examples above demonstrate that the direct method of performing the

• randomization test for two independent samples is not efficient in any reasonable sense

of the word. As sample sizes increase, the inefficiency of the method makes it

unsuitable for practical use. In the next section, it is shown that no efficient algorithm

is likely to exist for performing this test. To define what is meant by an efficient

.c a.grithrm. some ideas from the theory of NP-completeness are introduced.

61 j i 17
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B. ALGORITHMIC EFFICIENCY AND NP-COMPLETENESS

1. Basic Concepts and Terminology

To begin a discussion of algorithmic efficiency, several basic terms must be
defined. .\n excellent treatment of the subject is given in Garev and Johnson [Ret. 91.

.,d t.c terminology used there is adopted herein. Following Garev and Johnon. an
"'~"~,:m s j te-by-step procedure used to solve a problem. A prlle'm is

.. a general question to be answered, usually possessing several parameters, or
var~ables, whose values are left unspecified. A problem is described by givine:

I a general description of all its parameters, and (2) a statement of what
properties the answer, or solution, is required to satisfy. An instance of a problemis ',aincd hy speCi-ing particular values f or all the problem parameters ..r... \n
algori:hm is said to s.ive a problem I if that algorithm can be applied to any
Inst,,n1e I of t and is guaranteed always to produce a solution for that instance

To show the use of the above terminology, consider two classic problems from

graph theory. The first is due to the 19th century mathematician William Rowan

I Ianlton. The problem is to decide if an arbitrary graph consisting of a collection of

,ertices and edges has a path that passes through each vertex exactly once. Such a
* path. it it exists, is known as a tlamiltoniak, path. The parameters of this problem

consist of finite set V = v. v , ... vk of ertices and a set E e. el . . . . . . . of
edges between pairs of vertices. A solution is an ordering v(lr v,2). v(ki> of

the vertices such that v v i ) E E for 1 <5i < k and each vertex is visited exactlx

once. An instance of the problem would be obtained b, giving specific vertices and

edes (refrenced to a coordinate system, for example).

The second problem, due to Euler. is %erv similar to Hamilton's problem. It

can be stated usin2 the same sets as above, except that in this case. a path is sought

which traverses each edge in the graph exactly once. Such a path is called an Eu,'erian

Sazti. Both flarmlton's problem and Euler's problem can be solxed by exhaustive
tabulat:on of all possible paths, check:ng each one to see if it has the required

properties. This approach has the same problems as compiete enumeratlon of

combinations in the randomization test. The number of possible raths gro,.s in a

,:T.iar ,si7:on, and the algorithm quickly becomes too in icient "or practical use.

The important distinction between these two graph theoretic problems is that

there is a much easier way to solve IEuler's problem than exhau ,tie tabulation. E.uler
showed that a path traversing each edge of a graph exactly once must exist if the graph
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mecets two cond ItI Ons: I hc ver iph n.t t be connected andl 12) there must bne an ev en

numnber of' edoes that meet it Lin\ verte. wxith the exception of' the Starting Lin-,

1fiui,1hing points of [the path. -Ihe c r tn tinie req Ulred to Check this :s related to

it.e numbJer Of' vCr:LCS and M)!.no the nuLminer of po,,sible raths. A n aboorithml

usln,_ tI' i ruhis nraCtiLI even 'Aheri the iLnimber of vertiLes, And CJOC 5c-

111 e.drit he f Ict that the niumber of' possbepth a b sroc1a>I h

c,,, c, lianulton s problem. oeernosLash s~nplC .'nd efIliet meCtho1'd of'~ito

nscx er beenLnd. A' Ji1CsSCe aMnd l'dpddin)itroL RCe. In): p. 11)"j, The
Ptos elfI- i-ent methods avalabIe todax are fuindamentally no he-ter than exhi usti

L..,, C n.

-\I~o~tmta oprce elcittv could be viewed as, ofe th tt uses a
nunimu amout of' computer resources to arrive at the soiution to a problemi.

(:onipliTer resources includeI tns such as memory space, CPU~ time, and 1 0

i Innut Outr capacity. llowev er, since the critical resource IS usually time, the most

efli;cie-nt alizorith, 'is normallv the fastest one. 1he time requirements of-an algorithm
0 can bec expressed in terms of' a Single variable, the 'size of' a problem oin tance.

Informally, this can be thought of as the amount of data that must bec Input to

describe a given instance. Examples would be the number of' vertices and edges in

Hamilton's problem or the number of X and Y observations in the randonuz/ation test.

T[he formal way to characterize problem size views the Situation f'rom the standpoint of-
actual entry, into a comnputn deie Problems must. be Input in a single fnt ~tco

s,,-imbOis chosen from a fixed Set, or onput aiphabi'z. An enco'ding scheme mnust be
specified, which maps problem instances into the s.moi strng 1 ecibn th- The

invut length f'or an instance of a problem is the number of symbols required to -pecifR

the instance under the given encoding scheme. A*S Indicated in Garev ad Johnson

[Ref. 9: pp. 5-61, the input length is wha isue0stefomlmaueo instance size.

The time complexity function for an algorithm expresses its time requiremients

2' ivinv, for each possible input length, the largest amnounrt of time needed b% the

- .aLeorithm to solve a problem instance of that size. Ibis f'unction won t be well defined

unless~~ ~ a atclr optn dev e input alphabet and encoding sclhee are
pcLified. H owever, it turns out that these are relatively unimportant factors . What. i~s

0 tis the foCrm of- the time comprlexity fuLnction. TIhe f'ollwx.iniz discu,,\ion from

( i. ,':d. r.n Ref. 9: p.01 introducs this Idea:



Different algorithms possess a wide variety o different time complexity Functions,
i and the characterization of which of thee are 'e!Icient enouch' and which are

too inetll-cient will always depend on the situation at hand. However. computer
cientists recognize a sim ple distinction that offers considerable insight into these

matters, This is the dis:ion bet.veen polynonial time algorithms and
" exronent:al time aleorithms.

2. Poknomial Time and Exponential Time Algorithms

A ,";mia! time agr,zhm is derined to be one whose time complexity

• ,unction can be bounded by a polynomial. That is. there exists a constant c such that
4,m %

'" N )i - c .p1 N j (eqn 3.1)

'-4

,or al values of N!(). where fiNi is the time complexity function, p(N) is a
polynomial !unction of N. and N is the input length. An algorithm whose time

con.ple.xit\I function cannot be so bounded by any finite degree polynomial is called an

.,X,,1,0Mki age''rithm tRef. 9: p.61.
The distinction between these two types of algorithms becomes important

A hen the input lengths become large. Polynomial functions of degree k will evaluate to

be of the order Nk. but exponential functions are allowed to have terms such as 2N or

N', There is always a value of N beyond which exponential functions grow at a faster
rate than any polynorial function. even if the polynomial is of degree 100. It is for
t.:iis reason that polynomial time algorithms are generaily regarded as being much more

desirable than exponential time algorithms. There are some notable exceptions.

howe\ er. As mentioned in Garey and Johnson [Ref. 9: p.91. the simplex algorithm for

linear programm-ing has been shown to have exponential time complexity, but it

,tpcaiiy runs xery quickly in practice. Garey and Johnson [Ref. 9: p.8 also observe

A that "time complexity as defined is a worst case measure, and the fact that an algorithm

* S . has time complexity 2' means only that at least one problem instance of size n requires
that much time." Examples of exponential time algorithms that run well in practice are

rare. Most exponential time algorithms are variations on exhaustive search or complete
enumeration, while polynormal time algorithms generally exploit some fundamental..

---. rructue f a problem.

3. The Classes P and NP

Problems for which only exponential time algorithms exist are intractable, in a
en e. because even fairly small instances may never be solved in a realistic amount of

i-N I-"
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.:ne. For those problems that have pol:.nomial time algorithms, the polynonials

..,volved typicaily are not of a high order, and thus instances of practically any size can

be salved. It would be convenient ifall problems of interest could be placed into two

i cgroups, those having exponentiaL time complexity and those having polynon'al time

miulexiv. [_n:brtunatelv, it is exceedingly difficult to prove that a given problem is
,.-.. :: r.tae: that is. no po!ynomiai time algorithm can ever be devised to solve it. For a

N- ,:'1ma namther of problems it has been shown that exponential time algorithms are the

on,. o1 pasble, but for most practical problems of interest, this has not been done.

hFtose problems for which polynoirnial time algorithms are known to exist are
ir" a class denoted P. Euler's problem is a member of P. In between this class and the

cLiass cf provably intractable problems is another class. denoted NP. Fornal

dctiL:ions of t.ese classes usually involve models of computation known as Turing

2"2"machines. tlowever, to gain an understanding of the class NP, the concepts of
nondeter-ministic ccmputation and polynomial time verifiability are most important.

A deiermin:sic algorithm can be thought of as being composed of a
. nrede:ermined sequence of operations that do not vary each time the algorithm is used.

.,\ ,,,,,deerminisic algorithm introduces the possibility of randomness at points within

th:e nrocedure. A convenient way to view the operation of such an algorithm is to think

*- of it as being composed of two separate stages, the first being a guessing stage and the

second a caheckig srage. Given a problem instance, the first stage guesses some

structure. The second stage checks this structure in a deterministic fashion to see if' it is
S,¢,' a solution to the problem. A nondeterministic algorithm is said to operate in

poivnonual time if there exists some guessed structure that solves the problem and this

structu're can be verified by the checking stage in polynomial time [Ref. 9: pp.2S-291.

"- -. The class NP is defined informally to be the class of all decision problems that
can be 'solved' by polynomial time nondeterministic algorithms [Ref. 9: p.29]. A

decision problem is one that has only a yes or no answer, for example, "Does this

S graph have a Hamiltonian path?". Most problems of interest can be carefully phrased

as dec:sion problems, so this is not overly restrictive. A nondeterministic aigorithm

would solve' Hamilton's problem in the following way: (1) an arbitrar' path through

rh.e irarnh would be guessed, and (2) the path would be examined to see if it passes
,troch each vertex exactly once. If the graph does have a Ilanltonian path, then one

Gthe guesses ,vill lead the algorithm to respond 'yes', thus solving the problem.

I hmiltons problem is known to be a member of the class NP: this implies that step

2) bove can be performed in polynorrual time.
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-'. It is very important to note that the word 'solve' as used above does net mean

that a nordeternunistic algorithn is a realistic method for sol ino decision problems.

This is a only theoretical concept. In fact, a hypothetical machine using a

nondeterninistic al,:orithm is envisioned as having the abiiitv to pursue an unounded

-. nunrber of independent computational sequences in parallel. Thus, in Hamilton's

oro )lcm. t'e tflct that there may be an exoonential number of possible paths to check

- .s no: counted. It is only required that. given a path, it can be checked in polynomial

.::e. It is this notion of polvnomial time verifabi/iv that the class NP is intended to
-cture. Most importantly, as Garey and Johnson [Ref. 9: p.12, pp.2S-2 9 1 point out,

,)c:. nonial time verifiability does not imply polynomial time solvability.

.NP Complete Problems

A simplistic way to view the class NP is to think of it as containing 'hard'

problems: those for which polynomial time algorithms are not known, but neither can

it be proved that none exist. The problems in this class also share the important

0 property that any one solution arrived at by 'guessing' can be quickly checked, even

.- ta ....- there may be exponentially many guesses possible. The class P contains 'easy'

problens in the sense that polynomial time algorithms are known for them.

The relationship between P and NP is fundamental to discussions of

algoritniuc efficiency. It can easily be shown that Pg__NP. Following Garev and

Johnson [Ref. 9: p.32,:

Every decision problem solvable by a polynomial time deterministic algorithm is
'so solvable by a polynomial time nondeterrministic algorithm. To see this, one

impIlv needs to observe that any deterministic aleorithm can be used as the
checking staze of a nondeterministic algorithm. If HleP, and A is any polynomial
time deterministic algorithm for [I, we can obtain a polynomial time
nondeterministic algorithm for [I merely by using A as the checking stage and

-,. =,n oring the guess. Thus HeP implies [IeNP.

I is widely believed that the inclusion is proper, that is, PgNP but P-CNP. This has

-. not been proven, but all evidence seems to strongly suggest this is the case. This is of

prime importance. because if P differs from NP, then the set NP - P would not be

0 . erpt: - it would contain intractable problems.

"\nother concept central to the discussion of algorithmic efficiency is that of

-.prblcms of equivaient df/7cul'i'. If several problems can be shown to be related, or of

equaivcnt diificulty, then results of considerable generality and power can be obtained.
.. RC:Crr:ne again to (iarev and Johnson [Ref. 9: p . 131:

-p..,. ,- .. **l -* , /-',,* lt . -. 
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The principal technique used for demonstrating that two protemn, are -elated Is
that of 'reducing' one to the other, by giving a ccnstructive transformation that
maps any istance of the first probiem inoa qialent :ns-nce of the second.
Such a transformation provides the means for conv~ertine ar,% aizorirhm that
solves the second -roblem into a c:orres:on":ng alvcrnthm- fcr so~ving the First

The n.mportant c-araceri.zation here :S :;rne reduc.,riv. tn at Is, reductions

K. -~ for %wh'c' *he rcretransforma:~: ca.b xctdb o>;ncm;al time alzorithm.
If one -rob-lemn can. be rJedt nterhou a poi';noia] t,-e redluction. this

e ns ur _s Li: n'. %m' r~xi ue a rtt:o r the second prolblem can be converted

into a or-es-ron"4:no rc;'.ncrrua. %me j'.nhm for the First orobieIm.

The--e :c a .ihnNP that has an imrtrant Proper--.:

ever':, Irre n NP .>r te r:nn '.racOto one of the problems in this

surC::ass. Th-e pro rz-Tm in In's~s are named NP-complete problems. The

irnl~a~on ofthi su~a' ~r :a.-~~ ~Ifa:.'. one of the N P-complete problems

can b e soli' ed wiLh a -.. ~mu me -io~tm then so can e'.er- prolbem in NP.
*Aso, if any, problem-- in NP ~s inrat .then a'; the NP-comnplete problems must be

intractable. In a sense, -he NP-comp'ete proniems are the hardlest problems in NP.
A niturere~rsentn~ e rea -os:ri roetween the classes of ',robiems discussed so

far Is F;=- n F rur 3.1.

Pro vabi;'
IIntractableNP

Problems cmlt

p NP

@vFigure 3.1 Relationships Between Classes of Problems.
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- Hundreds of problems nave been ,.hwn to he NP-ocmnperte since the first
such problem was identified by Stenhen Cook in 1 te 't:sflahiitv problem,-, of
Boolean logic) [Ref' 9: p.11, p 1S". The ht of NP-comple:e problems inc!udes

I ianiuhons problem, many well known com--indtorati pro hems. and others from a
.*.. wide ,ariety of disciplines. As more and more probicm are added to the list, it appears

n:ore and more likely that PzNP and the .NP-conplete problems are truly intractable.

ut lttle progress has been made toward either a rnrcof or a disproof of this conecture.

As Garev and Johnson conclude [IRef. 9: p.141, even without suci a proof, the
-kno.edge that a problem is NP-compete suggecsts, at the very least, that a major
- eakthrough will be needed to solve it with a polynomial time algorithm.

5. #P-Complete Problems

So far zhe discussion of NP-completeness has centered around decision
problems with yes-no answers. In many cases, however, the real question to be
answered goes beyond simply whether a solution exists or not (yes or no). It may be

inrportant to Find out how man-; solutions there are. Then the problem becomes an

.nitne'rati.on prob/em. For example, associated with the NP-complete decision problem

'Does this graph have a Hamiltonian path?' is the enumeration problem 'tow many
I-, .1:st n.ct Hamiltonian paths are there in this graph?'

According to Garev and Johnson IReF 9: p.] 67), "Enumeration problems
,. provide natural candidates for the type of problem that might be intractable even if

P = NP." Even if the basic decision problem could be solved in polynomial time, it is
not at all clear that the number of distinct solutions could be deternned in polynomial

:.e. Note that enumeration problems do not require all the solutions to be dispia;d,

or.',.: counted. Thus the number of ttamiltonian paths in a graph may be exponentially

.r7e and an exponential amount of time would be required to list them all. but the

answver to the enumeration problem is just a single number. Some enumeration

'S - ,rc.,,s can be solved in polynomial time. For example, the question 'Given a graph

.. how many Eulerian paths are there for G." can be solved with a polynomial time

l)rithm. like the basic decision problem. Htowever, some enumeration problems do

not appear to be solvable in polynomial time even though the associated decision
* , pr'.d:-n; , an he solved in nol':nomial time.

To e:,compas these considerations, the ideas behind NP-complete problems
- '" -ir'i e extended. ..\ new class. d'o-Ignated 4P-complere can be used to categorize
*.C. enuneratTon prcbNems. 'I1is is intended to capture the additional diflcuhtv of

0,44
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enumerating soluticns. not lust their existence. This class is defined in a wav analoous

to ofe cia's cI NP-complete problems. Manv of the enumeration problems associated

wit K',l NP-compiete problems are #P-complete. What is interesting is that some

C!:":".11 t:on problems are now known to be #P-complete even though their asccio3ted

'ioroems are k1t known to be members of NP rRef. pp. los-1 I
-o all this is that if a practical problcm can be shown to be

t. P-:,on.n,:e. tC scarch for an eflicient, exact alooritim tmat olves the problem ,i" -t

neer re prod:ctive. This is not to say that one never will be 'und. but rather th:t

nior breakthrough wi!I be required. And if" an algorithm i s over discoered that so!ves
the prbe- in, iime, the i t will be ve fir reaching. Iven :hou'L

Lh _ ricirCm 'zo mil til implications.k eI

ee......rs of the class of P-complete problems are not vet rr<ginv intractable, it

ees rcasonable to operate on the assumption that they are. With that in mind, the

:,\estiafin of at.pproxiliation alzorthms is certainl of practical significance.

C. EFFICIENCY OF ALGORITHMS FOR PERFORMING THE
RANDOMIIZATION TEST

l. Randomization Test is an Enumeration problem

Performing the randomization test for two independent samples to accomplish

a s.ten,.,,cance test is an enumeration problem. The remainder of this chapter is devoted

to.s.own. that it is #P-complete. The fact that it is an enumeration problem is seen

nv co:iderina the structure of the test. The significance level a is obtained by counting

subsets of size n out of n - m elements such that the sum of the elements in each subset

is eCual to or mo:e extreme than the fixed value T0 . Analogous to the problems

- discussed in the last section. an associated decision problem could be stated "For some

fixed number K. are there K or more subsets of size n for which the sum of the

-ements is eoual to or more extreme than To? This could be answered ves or n, if a

.tlue of K were specified beforehand. This would effectively correspond to using the

randomization procedure to perform a hypothesis test, because the value of K could be

uetermined from the desired value of a using the relation a0  K V1n ). In the case

o:.cf .testing, there is no pre-specified value ' To calculate the significance

le.- el. c need to know how many subsets have sums equal to or more extreme than

T I In this case, the randomnization procedure becomes an enumeration problem rather

t,an a JCLiPin problem, The implications of this are discussed in the last chapter.

'. ,. " ~ .~.



2. Significance Testing is #P-Complete

To show that using the randomi7ation procedure to perform a significance test

is #P-compiete. two steps are required. First, an enumeration problem is introduced

."whih is known to be #P-complete. Second, performing the randomization procedure is

S:.A,. to ")e 01 C,/:1:Lz.'a:.: u.r, to th:s problem. The #P-complete problem is termed

ie L. K [.iR;/.SI SUBSt-T problem and is described next.

The K I.:\R(]IST SUBSET problem can be stated succinctly using the

, . terminology and format of Garey and Johnson lRef. 9: p. 114):

.Pr',,ci Iz. 'a : Given a finite set A. a size s(a) E Z for each a e ., and two

nonnegative integers B <5 s(a) and K < 2'A .

Qxcs'ir': .-\re there K or more distinct subsets . _ - for which the sum of the sizes

of the elements in .-V does not exceed B'

The notation i.Al is defined as the number of elements in the set A. It is not yet known

if this decision problem is in the class NP. but it is known that the corresponding

0 enumeration problem is #P-complete.

Performing the randomization test for two independent samples (assuming

si2nificance testing) can be described using the same kinds of set theoretic objects as

are used in the Kth LARGEST SUBSET problem above. This can be done in the

following way. Let A be the set of n + m elements consisting of the X and Y
observations taken together; that is, A = {X1, X2 .... X' ' " ,.... Ym}. Let the

size s(a) be the positive integer representation of each element of A. This does not

oY restrict applicability of this result to positive integer observations, however. To show

why, consider the following. Note that the test statistic being used T=VX is just the

sum of n elements selected from the set A. Suppose some of the elements of .4 are

negative. Then choose a positive constant q such that when q is added to every

member of the set .4, all the elements will become positive numbers. Every value of the

o test statistic will also be increased by a constant value, namely nq. This has the effect

-"'" of shifting the randomization distribution by a fixed amount, and it is obvious that the

counting process used to determine the significance level of the test is unaffected.

The next question that might be asked is, what if the elements of . (the X and

, Y observations) are real numbers'? If the elements in A are the observations from

some actual experiment, then any measuring device used can only produce results

accurate to within some fixed number of decimal places. Therefore, even though the set

of possible measurements is theoretically a subset of the real numbers, it in actuality
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can only be a collection of' lntcer values over sonic range; thle decin"alpoPti s

inniteia.Even if'ra numbers couldIatal eoand1rmSncepriet

::'x.OUld st:ll have to he -epre-erte-.. I-Itma'v in any: ph,:sIcal computing devl':c by a

C\onux ot bit,Aa n. the position of' thle dec::mal point is nmmaterial: the set clf

aestha Jcan ac I-l e rC-7CSented is restr1cted_ to lsome L1cllectio of' incrsL.

.e in-Tlcai:ion af' the nreLcding n~aravraphs is that any real expernmental data

:~etno:at ~~s~'ai nteervalued If' Lompuing devicecs ire used to perform

:_t !Li tNt. Thu,; resints about IlCOrithn :L e'l ICIenc% stated in terms (-I'

t' 1a n:Caars arn!'. wi-ether the truc cbervations are real numbers. integers, or

Next. iet the numbe..r B equal the vaue of the original'Iy observed test statisti!c

TI. let K '-C the numbJ-er of' test stati,,t,,c values equal to or more extreme thanTO
;on he oamcati~i rot)&m ssociated with thie question Are there K or more

L--ets, .4 -1 for -xh1ch the sumn of' the sizes of' the elements does not exceed

:s r~s: quvalntto perf'.rmning the tw,%o sample randomization test. Note that

% ioaHve ! a -tln 1,-eCL:!"eS K OP oed iflt urnL S1h5' .4 9j.. This i*ncudes aN

Cu'e : .1 edesof' how miany elements they, contain. The number of' such

'.CN:~ sinc the number of elements in .A is n-. In the randomization

to~- - ue.vwe are interested in countingL only those subsets with a fixed number of'

ecrurus ndne~vn. his is equivalent to enumerating all instances where the test

valUe is equal to or more extreme than T~ since the test statistic is formed by

o stsOf ,lie 11.

Restricting- the enumeration problem to subsets (f size n Is also zP-comnplete.

Thi1s can be ,hown as f'ollows. Suppose we had available an algorithm which could

enumerate the number of subsets of' site i For which the sum of the sizes of the

eiements does not exceed B for an% fixe vleoisuhta i:5 n m. i. Note that

byseILec::n = n, this algorithm would perf'orm the enumeration required for thle

"I'!::domnization test. Suppose f'urther that this algorithm operated in polynomial time.

tnI at is, in time bounded by a pol'. normal in N = n - m. Then, by simpl% incrementing

Seqluentiaillv from () to n -! in and uising this a lgoritnm.:1 repeatedly, we could count ti

the distinct SubsetsA4' .A f'Or Which the sumn of' the sites of- the elemients does not

0eLCCe' B. l*his IS true bCause of the. reLationship

N ) N"2
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where N n- m. In other words, we could solve the KL LARGEST SUBSET
.problem by using our algorithm N+1 times. This would mean the time required to

enumerate all the subsets .4' _: .4 for which the sum of the sizes of the elements does

not exceed B would be bounded by a function of the form (N -- 1 p(N) - but this is
easily seen to be another polynomial. This is a contradiction, because the Kth

L.\RGEST SUBSET problem is #P-complete. and its solutions cannot be enumerated
in polynomial time. ThereFore, any enumeration algorithm that only counts subsets of

fixed size n is also #P-complete.
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IV. ANALYSIS OF AN APPROXIMATE RANDOMIZATION TEST
PROCEDURE

A. INTRODUCTION

I. Reasons For Using An Approximate Method
In the previous chapter, it was shown that performing the randomization test

for two independent samples is computationally a #P-complete enumeration problem

when the method is used for significance testing. This means that a fast and efficient

way to perform the test is not likely to exist. Certainly one is not known at the present

time. In practical terms, the amount of computer time required to complete the

necessary calculations becomes totally unreasonable for large data sets. Therefore, if

the randomization test is to be used regularly, some way must be found to obtain

approximate results that are almost as good as the exact results but dont require

anywhere near as much computation time.

2. Considerations When Using Approximations

There are many approaches one could take in devising an approximate

randomization test. The idea is to come up with a method that yields significance levels

very close to those that would result if the exact test were used on the same data. The

method should give good results over a wide range of conditions and it should require

only a modest amount of computer time. Ideally', it should be possible to establish

bounds on the errors involved with using the approximation. These bounds should

result from an analytic investigation of both the approximation and the exact test.

Unfortunately, in the case of the randomization test, analytic results are hard

to come by. When a randomization test is used, the test statistic can take on as many

as (nrnM) values. The distribution of these values is called the randomization distribution.n
It is important to note that this is a conditional distribution. That is, it is formed by

using the given observations. Therefore, this distribution changes every time a set of

observations is taken. It can easily be shown that the randomization distribution

asvmptotically approaches one of the standard distributions, such as normal or chi-

4 square, but the use of the asymptotic distribution as an approximation may not be

accurate in some cases. As Conover [Ref. 4: p.327] indicates, when the observations

change from one sample to the next, it is impossible to measure the accuracy of any

asymptotic distribution.
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Another problem with developing analytic results is that the underlving

-., distributions of the X and Y populations are not required to be of some specific form.

It might be possible to derive error bounds on a conditional basis. That is, by stating
something Like 'If the underlying distributions are of the forms F(x) and G(y,) , then the

maximum error incurred by using this approximation is H(x, y).' Of course, the number

of possible distributions is infinite, and the 'true' underlying distributions can never be

known with certainty, so this approach may have limited value.

3. Method Studied

There are several ways that have been used to perform approximate

randomization tests. One way is to simply use the standard t-test, even though the data

may not be normally distributed, and then hope that the results are not too far off.

Other methods have involved using only portions of the data, sampling from the total

number of combinations, and fitting various distributions. Some of these methods are

briefly described in the next section. The method studied here with the aid of

simuiation is the 2-moment fit method. Significance levels obtained with this method

are compared to those obtained from the exact randomization test and the t-test.

Power curves for each test are also generated as a separate indicator of performance.

B. PERFORMING APPROXIMATE RANDOMIZATION TESTS

1. Subsampling

One way to perform an approximate randomization test is to determine the
,1 , significance le-.el from a subset of the test statistic values making up the randomization

distribution. The subset consists of combinations chosen at random from the (n+m)
combinations possible. The test statistic values are computed for these combinations

4 .. only and an approximate significance level is obtained. This is called subsampling and
-, . the combinations can be selected through random sampling with replacement or

," - without replacement. For example, if an experiment yielded 30 X observations and 30
* Y observations (n=m - 30), the total number of test statistic values making up the

randomization distribution would be (60), which is about 1.18 X 1017. Instead of-. ' -. "30

comparing all those combinations to the original test statistic value T0, a much smaller

set of test statistic values, say a few thousand, could be formed from combinations

selected at random out of the ( 60) available. This smaller number of test statistic

values could then be compared to To and an approximate significance level could be

found.
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Subsampling is a very attractive approximation method, since even a few

thousand test statistic values can be generated at random and compared rather quickly.

The method has intuitive appeal also, because every combination out of the (n+m)
possible is considered equally likely if the null hypothesis is true. Sampling from a set

of equally likely objects should yield representative subsets. The only questions to be

answered are how large a sample is required and whether sampling should be done with

or without replacement. Studies done on this subject [Ref. 11: pp.43-451 make it

appear that sampling with repiacement is acceptable and the use of sample sizes as

small as 1000 can provide good results.

2. Blocks
Another approximation method, which is a variation on the subsampling

scheme, is the use of blocks. This method can be applied to the randomization test for

two independent samples in the following way, which is described by Boyett and

Shuster [Ref. 12: p.666]. Within the X and the Y samples, an appropriate number of

blocks is formed by random allocation, each block having the same number of
cbservaticns. Then an exact randomization test is used on the block sums. For

example, if the data consisted of 30 X observations and 30 Y observations, six blocks

of five observations each could be randomly formed within the X's and the Y's. The

sum of the observations in each block would be found. Then the exact randomization

procedure could be used on the block sums. The number of all such sums would only

be 924. Again, significant savings could be achieved over performing the exact

test on all 1.18 x 1017 combinations of the observations without blocking.

How many blocks should be chosen depends on how accurate the results need
to be and on how much computation time is considered acceptable. Using a small

number of blocks may be less accurate, but the computer time required will certainly

be less than if many blocks are used. It should also be noted that it may not be

possible to form a convenient number of blocks (all containing the same number of

observations) without discarding some of the data. For example. if we had 23 X

observations and 26 Y observations, we might form 7 blocks of 3 observations each
within the X's and S blocks of 3 observations each within the Y's. In this case. two X

and two Y observations would have to be discarded.

0.:1 3. T-test as an Approximation
If random sampling from normal distributions can be assumed, the standard

two sample :-test is the appropriate parametric procedure that can be used to perform
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a comparison of means. However, even if the underlying distributions are not normal, a
histogram of the test statistic values from the randomization procedure often resembles
a bell-shaped normal density. This is true for the test statistic being used here. name!v

T = V X.. An equivalent test statistic that yields the same results is
T = (7X.)n - ("Y.) m. If this test statistic is used, a histogram of the test statistic
values is centered at the origin and takes on the appearance of a central t density. In
fact, the randomization distribution arising from the use of this test statistic is usuallv
approximated reasonably weil by an appropriately scaled t distribution. Hence, as Box,

Hunter and Hunter [Ref. 2: pp.95-9 7] observe, provided that a randorni:ed experiment is
performed, t-tests can be used as approximations to exact randomization tests even if

the underlying distrbutions are not normal.

4i. 2-Moment Fit Method

The next approximation method to be discussed will be called the 2-moment it

Smethod. The basic principle involved is simpi-: that of using a continuous distribution
to approximate a discrete distribution. As mentioned in the last section, if histograms
of the true randomization distribution are examined, it becomes apparent that in many

Rcndomizatla Histo :m, X.Y-N(2.!)

a 10 " - 4

Figure 4.1 Typical Randouzation Histogram.
-

cases the histograms seem to have a characteristic bell shape as in Figure 4.1. In Fact.
-"" if the null hypothesis is true, the distnbution of the randomization test statistic should

asymptotically approach a normal distribution under easily met conditions
[ [Ref. -4: p.32-]. With this in mind, it seems reasonable to assume that a normal

SdistIbution with some mean pi and standard deviation cr might be futed to the

randomiuzation distribution, as shown in Figure 4.2.
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f MHigtoqramY Vt Normal Owauty F-tted

,,.. .I 4-..
Tou Statsdc 'dUM (Sur" of X abuattim)

m. I

Figure 4.2 Normal Density Fitted to Randomization Histogram.

If the normal density 'fits' reasonably well, the area under a given portion of

the curve should approximate the corresponding area under the randomization

histogram bars. The area represented by the histogram bars equal to or more extreme

than the originally observed test statistic value To corresponds to the significance level

--..

Figure 4.3 Tail Areas Correspond to a.

I"'- a of the test. This is shown in Figure .3. Therefore, the laborious exact calculation of
(a by enumeration can be replaced by fitting an appropriate normal curve and using

4-€" tables to find the required areas. The approximate a obtained in this manner could be

':" ven, quickly calculated, no matter how large the number of test statistic combinations.
.'2 To 'fit a normal distribution to the distribution of test statistic values, the

O.1 first two moments (functions of pi and r} of the normal distribution must be related to
. " two values in the test statistic distribution, hence the name "2-moment fit'. Two values

g-'. that could be chosen are simply the end points - that is. the smallest and the larg.est

V%

0 X.

"t111 TMSate !M(umo bsrtm
Figur 43TllAea orepodtoa

"1"" . . . . . . ... , -- "e"st" ,-- ".". Thi is show in Fiur "-. Th rf r, the la orou ex c "-'"al"- -c-u-lati.on-" "'- of . -". '
l'. -.,?. ', ., b%-- enumeration can be relae b% fitin an a'-., * -rprat norma curve-, an using", " " .."" ''' '""-,,'" * ' ' ' ' ' -



%" values that the test statistic takes on when the randomization test is actually

T.erformed. It is easy to find these two values without enumerating all possible

.combinations: just sum the n smallest and then the a largest observations from the

comn-bmed set XY,.. Once the smallest and largest test statistic values are found, the

-r ab.:t:es asociated with their occurrence are easily determined from knowlede of
t e toztl !-umber of'test statistics possible, which is n+tn} ,. These probabilities are used

"o :.d the g and a that completely describe the fitted normal density. For a full

-" der:'.atton of zhe equations involved with this method, see Appendix .\.
,-

" Ihe 2-moment fit method seems intuitively appealing. As the number of test

":A Z 1s Ic Va1lues that make up the randomrization distribution gets large. it seemsZ
reaso~nable to expect that a continuous function ,'the normal distribution) should more

Iseiv approximate the true discrete distribution. The degree to which the

a"7roxnation yields values 'close' to the true a also depends on the degree to which

the normal curve follows the shape of the true discrete distribution.

* C. A COMPARISON OF EXACT AND APPROXIMATE METHODS USING

SIMU'LATION

1 Purpose of Simulation

The inherent difFiculties associated with deriving analytic results describing

error bounds have been discussed previousiy. Because of these difficulties, the errors

that result trcm the use of approximate methods can be studied conveniently using

imuluaion techniques. After a simulation has been run several times, approximate

error bounds can be established and confidence limts on those bounds can be applied.

A . metv tof input conditions and unlderlvi ng distributions can be entered, and the

eci'ct - each an be analyzed.

A- ,imulation was written for the sole purpose of comparing the signifiancc

;. and r,.ver of the exact randormzation test under varying conditions to two

Sternar-v e methods:

•.. I !- .he 2-moment fit approximation

2 , The two-sample t-test.

A umpiete description of the simulation and an interpretation of the ma or resuits

.t 0 ctar':. :c :t)m i, are the ,uljects of the re:a~nder of this chapter.

,1- .'.
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2. Description of Simulation

a. Overall Structure

Th.e overall structure of the simulation can be outlined as fo'lows. The

purpose :s to compare the power and significance level of the exact randomization test

:o the 2-moment fit approximate method and the standard t-test. This is accomplished

- repeatedl. gencratina sets of X and Y observations from preselected distributions.

The parameters of the X and Y distributions can be independently varied...At each

rpetinon, a s,,: 17cance test is performed on the h-pothesis

.0: = Jay
*%" ,:, vs. H1: jx "" , a

using each of the three methods. The results are recorded in a file for analysis bv

separate means. To generate power curves for each test method, the parameters of the
X distribution are held fixed while the mean of the Y distribution is varied over a

-£-2"," specified range. Using a pre-selected value denoted the probability of rejecting the

,,0; nuil hypothesis when it is false (the definition of power) is empirically determined for

each difference pX - p, in the specified range.

The followin, basic distributions can be selected for the X and Y samples:

(1) Normal

12) Exponential

-3) Uniform

All input parameters can be varied. These include:

a* YMean of X and Y distributions (all types)

b Standard deviation of X and Y distributions (normal)

ci Sample sizes n and m

d) Number of repetitions

.e Range over which power curves are to be generated
F) Value of a to use in obtaining power values.

S:t
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V . b. Programming Details

The simulation was programmed in VS FORTRA-N. Routines in both the
IISL and NON-IMSL libraries were utilized for random number zeneration and

calculation of values associated with the normal and t distributions. A complete

program listing is provided in Appendix B.

3. Results and Interpretation

a. Significance Levels

The first studies conducted with the simulation were those in which the

sinificance levels yielded by each of the three methods were compared. These

comparisons were made by generating n X observations and m Y observations from
the same type of distribution, except that p, and p, could each be varied. Once a set of

X and Y observations was generated, all three tests (exact randomization, 2-moment fit

approximation, and the t-test) were performed on that set and the three resulting
2senificance levels were recorded. This process was repeated a selectable number of

* times. The following input conditions were varied:

I) Distribution type (Normal, Exponential. and Uniform)

'2) 1 0 true (p =p and H0 false (p.

() Sample sizes n and rn for X and Y sets, respectively

'4) Number of repetitions

Sample sizes up to n = 11 and m = 11 were examined, and up to 200 repetitions were

used. For each input condition, the significance levels from the 2-moment fit method

and the t-test were plotted against the corresponding values obtained from the exact

randomization test.

The plotted data from these simulation runs indicated that for all sample

sizes larger :han n = 4 and m = 4. the 2-moment fit method generally produced smaller

significance values than either the exact randomization test or the t-test. with a

maximum average error of about 0.2 units of probability. The significance values

obtained from the t-test were much closer to those from the exact randomization test.

,'.*. . Iiis behavior was observed for all three distributions and for everv combination of

input parameters. Example plots appear in Figures 4.4 and 4.5.

O;, For simulated sample sizes less than n=4 and in=4, the fact that the

randomization test can only produce a discrete set of significance values tended to
in~troduce more variability in the results. It was also noticed that the 2-moment fit

method yielded essentially the same values as the other two methods when the

si:ni"cance levels were close to either 0 or I.
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- b. Power Curves

1o dJevelop power c:urves. e tO.c2.W-:2C0

signitncance test1ne siaon. Hel"22. . .e

0i p, vaiLies a rounrd a fix ed %alIu e o:'p
Exmles of power curves ,e.oerae ,c , ) *.:~::e~..I.~r

4.6. It appears from the powver curves tha th -nLn12 :':oth'l:e

hyvpothesis zoo often. That is. the powver c :'e~.Or t )- %%c3 .m r:: .. 2

This foliows from the fact ,hat the 2-m-oment f',t met,,hodunrl J.e ::a
% alues that were too lo When the null hx~potn-esis is true p,= p, -. CP;r U\e

should pass through the selected value of U0  Thisws no: t;oe LaC 10,r the -m en

Fit curves; they were consistently too men.

The power of the t-test was close to the powker c" the cxatn -a22..:zanicn
- .tet fr unsinolvinz th nral and the unif'orm distr,,hution\. If ik cxex er. :or the

- . ~~exponential distribution, the exact randlomization test powcr .aX a j . '\

the power curve for the t-test. This is consistent wvith the ter:c eati

Chapter Two - namely that the randomization test Is the r,,:., *'.p: r2. o:

aeainst the subclass of alternati'ves th at includes the exponern. ae:\:_ e

c. Randomization His togr-ams

Randormzation distributi:on histograms wvere '1.,t~ or ma''.

conditions used ]in the simulation. Most of' these %kcre al,~ : 'uro..j

expected. However, some of the hi'stoLeramsresuto trm uo:. .YCt

. .exponential distribution were tnuliiodai when the null hrpothes,,s w as fallse. Ilor twko

0examples. see Flizure 4.7. This behavior could help expaii wkh% the 2-rrncmet fot

method does not approximate the true significance level ver% .eli in these cae.11he

2-moment fit method tries to fit a I unimodal) normal densit.y to thie test statiscvaus

and ifthose values ex,,hibit muitimodal tendencies. larize errors are IlikelN

4. Summary of Results

The most significant results obtained f'rom the simulation are (I) the t-test is a

L -ood approximation to the exact randomization test in most cases, and ( 2) the

2-moment fit me-thod usually yields smaller significance values thin either the

_M -A
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Figure 4.7 Multimodal Histograms.

," randomization test or the t-test. The maximum average error incurred is about 0.2

units of probability. The reason the 2-moment fit method does not work very well is

probably related to its use of the two most extreme values of the test statistic. Finally,

the power curves that were generated showed that the randomization test can be more

powerful than the t-test when samples are exponentially distributed.
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V. SUIMMARY

A. MAJOR RESULTS AND CONCLUSIONS

This thesis has addressed issues related to the practical implementation of the

randormzatlon test for two Independent samples. The test was described as a method

for comnparing the means of two populations X and Y from which independent samples

have been drawn. The method can be categorized as a nonparanerric statistical

procedure because assumptions about the specific form of the X and Y distributions

and associated parameters are not necessary.

Although many nonparametric procedures are 'weaker' than corresponding

parametric techniques, the randomization test is at least as good from a theoretical

standpoint as its parametric counterpart, the t-test. In some cases, its performance can

O be better. Some of the indicators of a good statistical test are efficiency, unbiasedness

and power. The randomization test has been shown to have an asymptotic relative

efciecv of 1.0, it is an unbiased test, and it is the uniformly most powerful test in

certain situations. Each of these results obtained from the literature was discussed. The

implication is that the randomization test should be the prefened method of testing

_'-. equality of means unless reasonable justification exists for the use of the t-test

-- normality assumptions can be supported, for example).

Even though the randomization test may be the best way to compare population

means in theory, it can be so time-consuming to actually perform the test on a

computer that it is not often used unless sample sizes are relatively small. The structure

of the test is basically a counting procedure involving combinations of the X and Y

observations. As the number of observations increases, the number of possible

,I combinations becomes so huge that even the fastest computing machinerv cannot

perform the test in a realistic amount of time. There is no known way to perform the

test efliciently for large sample sizes in the general case.

To be more specific about what is computationally efficient and what is not,

O , topics from the theories of NP-complete and #P-complete problems were introduced in

this thesis. Algorithms for performing tasks or solving problems on a computer can be

- broadly classed as efficient if thev can be executed in pol"nomial time. If a problem can

he cla silied as NP-complete or #P-complete, it is extremely unlikely that a polynomial

"p .-.. a
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time algorithm exists which can solve it. The randomization test for two independent

samples was shown to be a #P-complete enumeration problem when significance

testing is being performed. Therefore, an efficient algorithm for implementing the test

on a computer is not likely to exist.

. BecaLse of the problem of excessive computation time, ways have been sought to
perform the randonization test approximatel; that is, to obtain significance values

:Iose to those that would result if the exact test were used on the same data. Some of

the ways that have been suggested to perform an approximate test include

subsampling . the use of blocks, asymptotic distributions or simply using the standard t-
test. here are advantages and disadvantages involved with the use of each of these

methods.

Another way to perform an approximate test is to fit a normal distribution to the

distribution of test statistics that would result if the exact procedure were used. This

,method extracts the largest and the smallest test statistic values and uses them to find

the first two moments of the fitted normal distribution, hence the name 2-moment fit
0 method. This method was studied with the aid of a simulation. The simulation

compared the performance of the 2-moment fit approximation to the exact

randomization test and the standard t-test. Significance levels were found and power
curves were developed for each test under varying conditions.

Several conclusions could be drawn from analyzing the simulation data. The first

* conclusion is that the 2-moment fit method will. in general. underestimate the true

significance level that would result from using the exact randomization test. This

behavior occurred for all conditions studied in the simulation, which included changes

in the sample distributions, changes in location parameters, and both true and false

null hypotheses. The maximum average error resulting from the use of the 2-moment

fit method approximation when the null hypothesis is true is about 0.2 units of

probabilitv. Error in this context is defined to be the true significance level from the

- randonization test minus the approxintate significance level.

Another important conclusion is that the t-test is quite adequate as an

approximation to the exact randomization test in most cases. Statements to this effect

are in the literature, and the simulal~jn results proved to be consistent. The

sILnificance values produced by the t-test were generallv very close to those obtained

from the exact randonzation test. When power curves were developed, though, it was

demonstrated that the exact randomi/ation test can be more powerful than the t-test

04
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when the underlying distributions are exponential. This is also consistent with

theoretical results identifying the randomization test as the uniformly most powerful

test in that particular situation.

The overall conclusion of this thesis is that the randomization test for two

independent samples should be used in its exact form for testing equality of means if

sample sizes are small and there is concern over whether or not assumptions of

normalitv can be justified. When sample sizes become large enough that performing an

exact randomization test requires more than a reasonable amount of time, the t-test

provides good approximate results. Of course, the t-test is always the most appropriate

test to use in the first place if one is willing to assume normality actually exists.

B. AREAS FOR FURTHER RESEARCH

1. Approximations

Approximate methods appear to be the most practical ways to implement

randomization tests if they are desired for large sample sizes. More research in this area

coUld be of value. It might even be possible to obtain more accuracy from the

2-moment fit method in some way. But this research indicates that a significant

imprcvement would be required before the method could be considered better than the

t-tc.t as an approximation.

2. Pseudo- Polynomial Time Algorithms

One area of research that could prove to be very significant would be the

development of a pseud,-poiynomial time algorithm to perform the randomization test

when hypothesis testing is being done. A pseudo-polynomial time algorithm is one that

canbe executed in polynomial time if a bound on the allowable input lengths is

established ahead of time. For a more detailed explanation, see Garey and Johnson

[Ref. 9: p.911. This would correspond to selecting upper limits for the sample sizes n

and m and designing an algorithm based on the knowledge that larger sample sizes will
_4 not be input to the routine. An example of this kind of approach is the use of dynamic

programming to solve the classic knapsack problem.

It was shown in Chapter Three that using the randomization test to perform

'significance testing is a #P-complete enumeration problem. Ilowever, if hypothesis
testing is being performed. the test is really a decision problem with a yes or no answer.

If maximum allowable sample sizes were to be established in advance, an approach
%similar to dynamic programming might be used to solve the problem much more

eciently than usino total enumeration. An indication of how this could be applied
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-. appears in Garev and Johnson [Ref. 9: pp.90-921. If a suitable algorithm could be

designed that runs quickly in practice (even if it is theoretically a pseudo-polynomial
time algorithm), an important step would be made toward more widespread use of

randomization tests for statistical hypotheses.

.J4
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APPENDIX A

DERIVATION OF THE 2-MOMENT FIT METHOD

Purpose: To obtain approximate significance values by fitting a normal distribution to
the distribution of exact randomization test statistics. Areas under the resulting

normal curve correspond to the proportion of test statistics equal to or more extreme
,: than the originally observed value T0 .

Step 1: Find p and c" that define a fitted normal density function.

Recall that the test statistic is just the sum of the X observations:

;-'". T =VX.i = .. n.

Let n be the number of X observations and m be the number of Y observations. Let

T be the smallest test statistic value. This value can easily be found by summing the n
smallest observations from the combined set {X,Y). The combined set {X,Y) is the set

of all the X and Y observations taken together. Similarly, let Tb be the largest test

statistic value, which can be found by summing the n largest observations from the set

{X.Y>.
It is possible that either T, or Tb (or both) are not unique. More than one test

statistic value might be the smallest, for example. This could happen if the number of

observations is small or there are many ties. To account for this possibility, define the

numbers js and Jb in the following way:
,number of smallest test statistic values

,b number of largest test statistic values.

One way to determine the numbers js and Jb is as follows. Order the set {X,Y} of

n--rn observations from smallest to largest. Look at the observation in position n. If it
is unique, then T is unique and is = I. If the observation in position n is not unique,

., then Ts is not unique. Assume there are k observations that are equal to the

observation in position n. Also assume that the k equal observations begin in position
n -r+ I. Then j (k ). The number 1b is determined similarly, except the set {X,Y}r
must be looked at in the opposite direction, from largest to smallest.
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Once T T J and ,ha'e been found, the two extreme points o! the

randonmzation distribution are delined. A normal density function is fitted by matching
:-s : a to the probabilities of randonih selecting the values T1 and Tb out of all

the , test statistics available. Let p. be the probability ofselectin T and let pb be
-Ihe probability of selecting T b. Thenp = Jn VnT") andpb = Jb 

Next, let 'V represent an arbitrary random variable that is normally distributed
with mean pi and standard deviation a. and let y be its density function. To match the

tail areas of the function y to the probabilities P and Pb' Set

P T TS = PS

fr the lower tail area. and

P >Tb =Pb

which is equivalent to

P(< Tb) = 1 - Pb

for the upper tail area. Letting Z represent a standard normal random variable, the

above probabilities can be rewritten in terms of the standard normal distribution

.anction by subtracting p and dividing by a:

:-. P -T)= P(__ )= PS

Tb-)

and P( Tb) P(Z5 < = 1 - Pb

Let z be the percentile of the standard normal distribution associated with the
probability p,. That is, P(Z z,)= p. Siularly, let zb be the percentile associated
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with the probability I Pt, Then

/s (3,

and 7 Th -

Nultipiving through by a and rearranging yields the two equations

g, °W.",,g zscr = T s

i4- Z b a = Tb

The above system of linear equations can be easily solved for the quantities p and a by

standard methods to yield

ZbT - zTb

Zb - Zs

and " T b - Ts2--and= b"

Zb - Zs

These are the values of g and (7 that define the fitted normal density function yJ.

Step 2: Relate the area under the fitted normal density function to the proportion of

test statistics equal to or more extreme than T O.

Two cases must be considered, depending on whether T O is in the upper or lower tail of

the distribution of all (n+m) test statistics.

Case 1: T O is in the lower tail.

* Let a be the significance level that would result if an exact randomization test

were to be performed on the same data. Recall that a is found from the proportion of

test statistics whose values are equal to or more extreme than the originally observed

value T O. This proportion is doubled to yield the value of a because the test is two
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tailed. The proportion of test statistics whose values are equal to or more extreme than

T. is approximateN the same as the area under the fitted normal density function Y to

the ele of T0 since T is in the lower tail. Since areas under a normal density function

correspond to probabilities, the following relation holds:
5-

a 2P('P < TO) = 2P(Z < 0

where Z is the standard normal random variable. Substituting the values of P and a for

the fitted density y in the equation yields

zT -zT
''a ~ 2P(Z < Zb zs

b

Zb - Zs

Which simplifies to

-2P(Z Zb(TO - Ts) - z(Tb - TO)
Tb - T

The probability on the right can be found by consulting a table of the standard normal

probability function.

Case 2: T o is in the upper tail.

The same reasoning used in Case I is applicable. Due to the symmetry of the

normal distribution, P(Z> ) P(Z<5 - ;) for all . Therefore, the resulting
approximation formula for a is the same as in Case I with the exception of a minus

sign:

a z2P(Z - b(To - T) z- Zs(Tb - TO)
Tb -T s

'A
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APPENDIX B

SIMULATION PROGRAM LISTING

C
C Principal Variable listing:
C A() ........ Output vector used in combinatorial procedure
C ALPHA ...... Significance level for power curves
C APCWER ..... Approximate power
C APPROX ..... .Approximate significance level
C DELTA ...... Difference in means, X and Y
C DTYPE ...... Distribution type
C DXY() ...... Data X and Y vector
C EPOWER..... Exact power from randomization test
C EXACT ...... Exact significance level
C ISEED ...... Random number generation seed
C KDX ........ Unequal sample size variable(X)
C KDY ........ (Same)(Y)
C L .......... Largest value of the test statistic
C NCOMB(,)... No. of combinations
,CDCNX ......... No. of X's
•C NY ......... No. of Y's
C S .......... Smallest value of the test statistic
C TOLER ...... Tolerance on equality of sums

* C TPOWER ..... T-test power value
C TVAL ....... T-test significance level
C ZL ......... Quantiles of the standard normal distribution
C ZS ......... associated with the largest and smallest
C values of the test statistics.
C, C **********************************************************
C Program Begins Here.
C
C

INTEGER NCOMB(2:15,2:15),DTYPEH,A(15),RESP
REAL*4 DXY(30), SN(30) ,E(30) ,U(30) ,L
REAL*8 Q,X,ZS,ZL,Y,P,APPROX
LOGICAL MTC

C
C Read in no. of combinations from external file:
C

READ(UNIT=7,FMT='(IlO)',ERR=1) ((NCOMB(I,J),I=2,15),J=2,15)
GO TO 2

1 PRINT *,'ERROR IN READ.'
STOP

2 PRINT *,'Enter the following parameters:'
PRINT * Alpha'
READ *,ALPH

PRINT *'Distribution type:'
PRINT I = Normalv
PRINT *,' 2 = Exponential'
PRINT ' 3 = Uniform'
READ * DTYPE

C
i. PRINT *,' Xmean'

READ *, XNEAN
C

PRINT *,Xsigma'
READ *, XSIGMA

C
PRINT *,'Ysiama'
READ *, YSIGMA

C
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PRINT *, 'Ymean range in the form YMIN, YMAX'
READ *, YMIN,YMAX

C
PRINT *,'No. of divisions to divide mean range (MDIV)'
READ *, MDIV

C
PRINT **,'No. of repetitions (NREPS)'
READ *, NREPS

C
PRINT *,'Range of sample sizes: KMIN,KMAX'

READ *, KMIN,KMAX

PRINT *,'For unequal sample sizes, enter KDX, KDY:'
READ *, KDX,KDY

-'. ISEED=47771
T0LER=1.0E-5

C
YSTEP= (YMAX - YMIN)/MDIV
IF Y AX.EQ.YMIN) MDIV=O

C ** Begin Main outer loop: vary mean of Y while holding X fixed.

DO 7003 MSTEP=0,MDIV

YMEAN = YMIN + YSTEP*MSTEP
DELTA = YMEAN - XMEAN

c
C *C Next loop: vary sample sizes for X and Y.

* DO 7002 KSIZE = KMINKMAX
• -. C

C '(Start with equal sample sizes, then vary by KDX,KDY):
NX = KSIZE + KDX
NY = KSIZE + KDY

C
NC = NCOMB(NX,NY)
N = NX + NY
K = NX

C
C Initialize power curve counters:

KE = 0
KA = 0
KT = 0

C
C *Start iteration loop:

DO 7001 ITER = l,NREPS
C
C 'Select appropriate distribution
C

GO TO(I01,102,103) DTYPE
101 CALL NORMAL( ISEED,NX,HY,XMEAN,XSIGMA,YMEAN,YSIGMA,DXY )

* C
C///'Data import facility:
C READ(UNIT=1O,FMT='1F5.1)') (DXY(I),I=1,12)

GO TO 200
102 CALL EXPONL( ISEEDNXNYXMEAN,YMEANDXY )

GO TO 200
103 CALL UNIFRM( ISEED,NX,NY,XMEAN,YMEAN,DXY )

C 'Find value of observed test statistic TO:
C
2C0 TO = 0.4<-'"Do 210 IX = 1, NX

210 TO = TO + DXY(IX)
C
C 'The following section performs an exact randomization test ofC significance for the null hypothesis Ho: Xmean Ymean against
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a two sided alternative. The sum of the X observations is used
C as the test statistic. In addition, the largest and smallest

C test statistic values are found for later use in the approximate
C method.

:r.:tialize parameters! counters:

S=TO

L 0

N- 0

C Generate all pocssible combinations of the elements in DXY()
tae;NX at a time: This algcritmL. is given in Ni:enhuis, A. &

H -. S. , -Combinatorial A -orithms for Computers and Cal-
ouaor, nd EdI. Academic tress, 1978 ,pp. 32-33.

17'C GO TO^ 4,D

40 1. X.LT.N-H) H=O

.1= K4 -F)
C' 0 ::1 J=1.i

1-C A(1).TE.N-K+1

C Find slim of the X's for this combination:

30 5C 300 IL =1, NX
33 T7+ :XY ( A(IL)

C,///'Test statistic output facility:
C .WRITE(10,69) T,NC

C69 F DRIAT(FIO.4,2X,16)

C'Find smallest & largest sums and count them:

IF ( ASS(T-S) .LT. TOLER )THEN
is = is + 1
GO TO 310

ELSE I F ( T .LT. S ) THEN
S T
JS 1

END I F
C
310 IF ( ABS(L-T) .LT. TOLZR ) THEN

IL =JL'+ 1
GO TO 320

E.LSE IF ( T .GT. L )THEN
L T
JL 1

END IF
320 CONTINUE

C
C 'Count # of observations <= and >= TO:

IF ( T.LE.TO )NLE = NLE +1
%\ IF (T.GE.TO )NGE =NGE + 1

C
C0 CONTINUflE
C
C 'Compute exact significance level:

IF (NLE.LE .NGEEXACT REAL(2*NLE)/REAL(NC)
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IF ( NGE.LE.NLE ) EXACT = REAL(2*NGE)/REAL(NC)
C
C Perform approximate method:

Q = DBLE(JS) / DBLE(NC
CALL INORN ( Q,X,IERR

IF ( IERR.EQ.1 ) THEN
PRINT ,,'Error in subroutine INORM
STCP

END i FC

IF JS.EQ.JL ) THEN
ZS = X
ZL = -X

ELSE
ZS = X
0 = DBLE(JL) / DBLE(NC
CALL :NORM ( Q,X,IERR
IF ( IERR.EQ.I ) THEN

PRINT *,'Error in subroutine INORM (2)'
STOP

END I F
C

ZL = -X
END IF

Y = (ZL*(TO-S) + ZS*(L-TO) ) / (L-S)
CALL MDNORD ( Y,P
IF ( P.LE. 0.5D0 ) THEN

APPROX = 2.ODO P
ELSE

APPROX = 2.ODO * ( 1.ODO - P )
END IF

C
C
C 'Perform standard t-test:
C
C CALL TTEST ( DXY,NX,NY,TVALC
C 'Increment power curve generators:
C

IF ( EXACT.LE.ALPHA ) KE = KE + 1
IF APPROX.LE.ALPHA ) KA = KA + 1
:F TVAL.LE.ALPHA ) KT = KT + 1

C
WRITE(8,1000) DTYPE,XMEANYMEAN,DELTA,NX,NY,TVAL,EXACT,APPROX

1000 FORMAT(11,3(2X,F6.3),2(1X, 3),3(2X,F7.5))
C
7001 CONTINUE

C
C
C 'Calculate ave. power values for this sample size:* C

REPS = REAL(NREPS)
EPOWER = KE / REPS
APOWER = KA / REPS
TPOWER = KT/ REPS

C
C 'Write power curve values into separate file:
C

* WRITE(9 2000) DTYPE,NX,NY,DELTA,EPOWER,APOWER,TPOWER
2000 FOR-1AT( 3 I3,2X),F6.3,3(2X,F7.5))

C
7002 CONTINUE
7003 CONTINUE

'o/. C
%-"" C

-a PRINT *,' Another run? 0 = no, 1 = yes'
READ * RESP
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IF ( RESP.EQ.1 ) GO TO 2
.1* C

STOP
END

C
C

C

SUBROUTINE NORMAL ( ISEED.NX,NY,XMEAN,XSIGMA,YMEAN,YSIGMA,DXY
C 'Generatcz rormal X and Y samples.

DIMENSIOA DXY( NX + N"Y ),SN(30)
NGEN = NX + NY
.-LL SNOR ( ISEED,SN,NGEN,2,O

C
C : ne±rate X:

DO 1lIX =1, NX
1 DXY(IX) XMKEAN + XSIGMA * SN(IX)

C
C 'Generate Y:

DO 2 IY = 1, NY
2 DXY(NX+IY) = YMEAN + YSIGMA *SN(NX+IY)

C
RETURN
END

C
C

0 C
C

SUBROUTINE EXPONL( ISEED,NX,NY,XMEAN,YMEAN,DXY
C
C 'Loads DXY with exponentially distributed X,Y.
C

DIMENSION DXY( NX+NY ),E(30)
NGEN =NX + NY
CALL SEXPN ( ISEED,E,NGEN,2,O

C
C 'Generate X:

DO 1 IX 1, NX

C1 DXY(IX) =XMEAN*E(IX)

C 'Generate Y:
DO 21Y =1,NY

2 DXY(NX+IY) = YMEAN*E(NX+IY)
C

RETURN
END

C

c
SUBROUTINE UNIFRM ( ISEED,NX,NY,XMEAN,YMEAN,DXY)

* C
C 'Loads DX'! with uniformly distributed X,Y.
C

* DIMENSION DXY(NX+NY),U(30)
NGEN =NX+NMY
CALL SRND ( :SEED,U,NGEN,2,0

C 'Generate X:
DO IIX=1, NX

CI DXY(IX) =U(IX) + XMEAN - 0.5

-. C 'Generate'Y:
DO02IY =1, NY

2 DXY(NX+iY) =U(NX+IY) + YMEAN -0.5

C
-, RETURN

END
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C
C
C

C SUBROUTINE INORM ( Q,X,IERRC
C 'This routine computes the inverse of the normal probability function
C using a modification of the formula civen in Approxlmat:ons for
C Digi tal Computers, C. Hastings, 1955.
C The modification consists of the addition of a sinusoidal error
C reduction term effective in the probability range 10-9 < Q < .5.
C
C REAL*8 Q,X,N,Y,TB

C 'Is Q in the range 0 < Q <= 0.5 ?
C

IF ( Q.LE. O.ODO .OR. Q.GT. 0.5D0 ) THEN

GO TO 10
END IF

C
N = DSRT( -2.ODO * DLOG(Q)
Y 1.085085260D0 / DS RT(N)
T 2.515517D0 + 8.028 3D-I * N + 1.0328D-2 * N * N
B = 1.ODO + 1.432788D0 * N + 1.89269D-1*N*N + 1.308D-3*N*N*N
X = (T/B) - N + 4.434009D-4 * DSIN( 1.1493099DI*Y - 5.789591D0
IERR = 0

10 RETURN
END

C
C
C.'" C

SUBROUTINE TTEST ( DXY,NX,NY,TVAL )
C
C 'This routine performs a standard 2-sample t-test for differences
C in the means of X and Y samples.

D:MENSION DXYZ(NX+NY)
C
C 'Sum X's and X*2's:

SUNX = 0.
SUNX2 = 0.
DO 1 I= 1, NX
XOB = DXY(I)
SUMX = SUMX + XOB

1 SUMX2 = SUX2 + XOB*XOB
C
C 'Same for Y's:

SUMY =0.
SUM'12 = 0.
DO 2 J=1, NY
YOB =DXY(NX+J)

2 SUNY = SUMY+ YOB
SUMY2 = SUMY2 + YOB*YOB

C
DF = REAL( NX + NY - 2
52P ( SUMX2 + SUMY2 -(SUMX*SUMX/NX)-(SUMY*SUMY/NY) DF
T = (SUMX/NX)-(SUMY/NY) )/SQRZ( S2P* (I.0/NX) + (1.0/NY)
TA = ABS(T)
CALL MDTD ( TA DF, ,IER
IF ( IER.NE.O PRT *,'Error in subroutine MDTD'6 TVAL = Q7@ C
RETURN
END
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